Global stability in difference equations satisfying the generalized Yorke condition

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the global asymptotic stability of difference equations satisfying a Markus-Yamabe condition

We prove a global asymptotic stability result for maps coming from n-th order difference equation and satisfying a Markus-Yamabe type condition. We also show that this result is sharp. 2000 Mathematics Subject Classification: Primary: 39A11. Secondary: 37C05, 37C75.

متن کامل

A note on the global stability of generalized difference equations

In this note we prove a discrete analogue of the continuous Halanay inequality and apply it to derive sufficient conditions for the global asymptotic stability of the equilibrium of certain generalized difference equations. The relation with some numerical schemes for functional delay differential equations is discussed.

متن کامل

Stability of generalized Newton difference equations

In the paper we discuss a stability in the sense of the generalized Hyers-Ulam-Rassias for functional equations ∆n(p, c)φ(x) = h(x), which is called generalized Newton difference equations, and give a sufficient condition of the generalized Hyers-Ulam-Rassias stability. As corollaries, we obtain the generalized Hyers-Ulam-Rassias stability for generalized forms of square root spirals functional...

متن کامل

A self-invertibility condition for global periodicity of difference equations

Given a non-degenerate interval of real numbers D, and a continuous function f : Dk → D with k ≥ 2, we consider a kth-order difference equation of the form yn+1 = f (yn, . . . , yn−k+1); n = 0, 1, 2, . . .. We develop an easy-to-apply necessary condition so that all solutions of the above-mentioned equation are periodic of the same period. c © 2005 Elsevier Ltd. All rights reserved.

متن کامل

Global Asymptotic Stability in a Class of Difference Equations

We study the difference equation xn = [( f × g1 + g2 +h)/(g1 + f × g2 +h)](xn−1, . . . ,xn−r), n = 1,2, . . . , x1−r , . . . ,x0 > 0, where f ,g1,g2 : (R+) → R+ and h : (R+) → [0,+∞) are all continuous functions, and min1≤i≤r{ui,1/ui} ≤ f (u1, . . . ,ur) ≤ max1≤i≤r{ui,1/ui}, (u1, . . . ,ur) T ∈ (R+) . We prove that this difference equation admits c = 1 as the globally asymptotically stable equi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2005

ISSN: 0022-247X

DOI: 10.1016/j.jmaa.2004.08.028